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GCermany.

Introduction.

Consider a hypersurface germ X C €™, defined by an equation f = 0, f ¢ Q =
Clxq. Xy »..Xp} and let X be a subscheme of the singular locus Sing(X) (with structure
ring O/(f.Jf ), J¢ the Jacobian ideal). In [J-S1] we introduced the functor Def(Z,X) of
admissible deformations of the pair (£,X). An admissible deformation (Zg,Xg ) over a
base S consists of flat deformations Zg and Xg over S, such that Zg is contained in
the critical locus of the map Xg —S. This notion of deformation was first considered
by R. Pellikaan ([Pel], [Pe2]) and leads under the condition that the space of first order
deformations

THE,X) = Def(E,X)(C[c]/2)

is finite dimensional to the existence of a semi-universal admissible deformation. We
will give a short sketch of its construction fu §1. ( See also [J-S1] or [J-S2] for the
formal case.)

An interesting situation arizes when we consider a map ¢: X ~— €™, where X
is an n-dimensional Cohen-Macaulay (multi-) germ with (say) isolated singular points.
As an example one could have in mind the situation where X C ‘cN and ¢ is induced
by a generic linear projection L : cN — ™' | The image X = ¢(X) then is a hyper-
surface with a singular locus ¥ of codimension 2 in c™! , the double locus of ¢ in the
target. The map §: X — X can be identified with the normalization map of X. The
deformation theory of this situation is related to that of admissible deformations in
the following way:

Theorem:

Assume that the conductor €= om (O)N(,Ox) is reduced and let £ C X be defined
by €. Then we have natural equivalences:

Def(X — €™y =3 Def(R —X) = Def(X,X)

Furthermore, the natural forgetful transformation

Def(X — €™1) — Def(X)  is smooth.
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Here the first two functors refer to deformations of the diagram (see [Buli. The first
map is induced by forming the image of ¢, the second by forming the conductor. The
first and the second statement together imply that the functor Def(£,X) is as compli-
cated as Def(X). For proofs of these statements we refer to [J-S1], §4 and the forth-
coming paper [J-S3].

Let ¥ — B be the semi-universal deformation of X. An irreducible component of the
base space B is called a smoothing component if the fibre Rs over a general point s
of this component is a smooth space. The corresponding notion for the functor
Def(Z,X) is that of what we call a disentanglement component. These are components
of the base space of the semi-universal admissible deformation for which the fibre X
over a general point s of the component has smooth normalization Xs and the mapping
from Xs to X is stable. For the dimension of smoothing components there is a
formula conjectured by J. Wahl [Wa] and proved by G.-M.Greuel and E.Looijenga [ G-L].
In §2 we apply their ideas to find similar results for the functor Def(X,X). In the
theory of hypersurface singularities one has to distinguish between deformations of the
hypersurface X and deformations of a function f that defines X. It is useful to have
a similar distinction for admissible deformations. This leads to a functor Def(Z,f)
(which maps smoothly onto Def(Z,X)) for which the result is more natural. In §3 we
concentrate on the case that X is a weakly normal surface singulary in c3. We prove
that the difference in dimension of two disentangelement components is even. This
implies the same statement for smoothing components of normal surface singularities,
a fact first discovered by J. Wahl [Wa]. In §4 we give a proof of a conjecture of
D.Mond, first formulated as a question in [Mo2], on the A, - codimension of a map
germ ¢:C2—— €2 . (For a different proof see the paper of D.Mond [Mo3] in these
proceedings.)
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§1 The Semi-universal Admissible Deformation.

As in [J-S1] and [J-S2], we consider a pair of germs of analytic spaces £ C X,
where T C Sing(X). The singular locus is defined by the Fitting ideal of Q‘x , as usual,
QOur strategy to construct a semi - universal deformation for the functor Def(Z,X) is
very near to the one used by H.Hauser [Ha] to construct one for isolated singularities.
The idea is to construct first a very big object in the Banach analytic category and to
come down to a finite dimensional space by putting in the extra geometrical conditions.
The following five steps outline this procedure.

Step 1: First embed % and X in CN . Let IZ =(g] - ) and Iy=(f; ,...,f ) be the
ideals of £ and X. Consider the map

F:eN— %™ x — (g,(x),...,8,00),f,(x),....f_(x])

and the projections py : CT x ¢M —CT and Px: c’ x¢™ — ™.
Note that (py P! (0)= X and (pgF)™! (0)=%.

Step 2: Construct the semi-universal unfolding of the map F, with groups of coordinate
transformations at the right which respect the projections py and py. Let the base space
be B, a Banach analytic space.

Step 3: Form the families (py Fg )1 (0)=: X-g and (py Fg )1 (0)=:Zpg over the space
B. Use a flatifier to get the subspace ZF C B such that the induced families E? and
Xeg over F are flat.

Step 4: Over “F we can form the critical space C of Xex —F. Analoguous to the
flatifier there is a notion of containifier. We use this to restrict our families to the
sub-space B of‘}' such that over B we have Zg C CB' We now have an admissible family
(Zg,Xp ) over B.

Step §: If the space TYS,X) is finite dimensional, then B is an analytic space, having
TXE,X) as Zariski tangent space. The family Ep = ((Zg. Xg) —*B) ¢ Def(Z,X)(B) is
versal in the following sense: Given any admissible deformation £, ¢ Def(Z,X)(A) over
A, induced by «:A — B, and any admissible deformation £, ¢ Def(Z, ,X, )C) over
CDA , there exists a map v: C —B, extending « and inducing . from fg . Further
more, the principle of openness of versality holds.

We want to stress however that the results in §3 and §4 are independent of this
construction because in those cases Def(Z,X) can be related to other functors for which
the convergence of the semi-universal deformation and openness of versality is already
known,
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§2 The Relative T' - sequences.

We consider a hypersurface X, with an equation f = 0, f¢ O . Let = be defined by
an ideal I ¢ ©. The condition that ¥ C Sing(X) is that we have (f, Jp) C L (Or, fe m.
Here J¢ =(3f/3x, ....,0f/3x ) is the Jacoblan ideal of f. For reasons of simplicity and
because of the applications we have in mind we assume:

1) ¥ is a reduced Cohen-Macaulay germ.

2) dim(supp(1/(f,J£))) < dim(Sing(X)).

3) dimTHE,X) € w.

Under these circumstances T =Sing(X),.q . so I is completely determined by X alone
(and Def(Z,X) becomes a sub-functor of Def(X), see [J-S1] and [J-S21 ).Transverse
to a generic point of I the hypersurface X has an A, - singularity (cf. [Pe 11).

There is an exact sequence computing the space T!(Z,X) of first order admissible
deformations:

0 — Ox — O+t ® Oy — Py(A) — THE,X) — 0 m

Here Py(A) is called the ideal of admissible functions. A precise definition of Px(,4)
can be found in [J-S1] and [J-S2]. The important properties that we will use here are
that Py(A) is an ideal and that it occurs in the exact sequense (1).

As iIn [G-L], we study next what happens in a one parameter family.
Let £y = ((ZA, Xp) —*4) ¢ Def(%,X)(4) be an admissible deformation over a small disc
A. Then analogous to (1) we have a relative sequence:

The cokernel of the last map we denote by T! (£4,X,)e] -It is naturally an Op-module.

Proposition (2.1) :

The elements of TI(ZA’XA)reI are in 1-1 correspondence with isomorphism classes of
admissible deformations of (X,X) over AxSpec(€[e]/e2 ) which restrict to the given
Ep € Def(Z,X)(4)

proof : This is a matter of definition reading and is similar to the proof of (1) in [J-S1].
(A more systematic approach to relative groups will appear in [J-S2].) ®

Now, as in [G-L], there is a commutative diagram:

0 — ecnﬂxA/A ® OXAt—’ ®C"+1XA/A ® OXAA @Cn-&—] ®OX —0

l l l
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with exact rows, induced by multiplication by t, a local parameter on A. Hence, by the
snake lemma, we deduce a six-term exact sequence:

t
0 =0y, /A —*0x,/a —0x —
_— (3)
— THE,, X ) —= THE Xppe] — THE,X)
(In fact, one can define higher T! 's to prolong the sequence to the right.)

Definition (2.2): (With the notation as above)

An admissible deformation of (Z,f) over a base S is a pair (Zg, fg ) where Zg is a flat
deformation of I over S, fg a deformation of f over S(i.e. a function parametrized by
S) such that (Zg, Xg :=fg™! (0) ¢ Def(£,X)(S). The functor S — {Isomorphism
classes of admissisble deformations of Z,f over S } is denoted by Def(Z,f). Here
isomorphism is defined in the obvious way. (See also [J-§2])

The functor Def(Z.f) is closely related to Def(Z,X) and one has:

Proposition (2.3):

1) The forgetful transformation Def(Z.f) —Def(Z,X) is smooth.
2) If X is quasi-homogeneous, then one has an isomorphism of vector spaces
TVEf) — THE,X).

Analoguous to the exact sequence (1) one has an exact sequence

0 — O » Oen+t »P(A) — THEf) — 0 (4)

Here O :={8e®cn+1 [ $(f)=0} is the module of vector fields killing f and P(A) is again
the ideal of admissible functions (but now it is an ideal in © instead of Oy ). In the
same way as we derived the exact sequence (3) from (1), we can derive from (4) a
six- term exact sequence associated with an element (ZA, fA) of Def(Z,f)(A):

t
0 =8¢ /p =20 /4 — 0 —

(5)
— THE, ) po] —— THEp, F)pe) — THE)

Here the relative group T! (Zp.fp )ye) has an interpretation similar to the one in
proposition (2.1). We leave it to thé reader to spell it out.

Now let Ep = ({Zp,Xp) — B) ¢Def(Z,X)(B) be the semi-universal admissible
deformation of (Z,X). (See also §1.) By versality, our given family (Z4,X, ) —A is
induced via a map o:A —B from Eg and as in [G-L] we see that the dimension of
the image of ! (ZA . XpAdype] in TXZ,X) is equal to the dimension of the Zariski tangent
space to B at a general point of the image of «. Of course, similar statements hold for
Def(Z,f) and hence by the exactness of sequences (3) and (5) we get:
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Proposition (2.4):
The dimension of the Zariski tangent space to the base space of the semi-universal
admissible deformation at a general point of the image of « is equal to:

A. For Def(Z,X): rankg), (T'(£5,Xy)pep) + dimg(Coker(0x, /5 —Ox)

B. For Def(L,f): rankgy, (T (£, fp)re))

+ dimC(Coker(OfA/A ———¢9f))

Corollary (2.5):

A. Suppose we have a deformation (Z,,X,) over A such that at a generic point of A the
fibre has only rigid singularities (for the functor Def(Z,X) of course }. Then the
dimension of the component to which « maps is equal to dim(Coker(@XA/A — 0y ).

B. Suppose we have an admissible deformation (Z5.fp) over A such that for a generic
point of A f, has only rigid singularities in the zero fibre and some A; - points outside
the zero fibre. Then the dimension of the component to which a maps is equal to
HA+ dim(Coker(@)fA/A —op).

The corollary follows, because the rank terms of proposition (2.4) are zero in case A.
and #A in case B. By openness of versality it follows that the components in question
are generically reduced, so the dimension to the Zariski tangent space at a generic point
is equal to its dimension.

Lemma (2.6):
With the notations as above one has :
Coker(@fA/A —0g) = Coker(H](OA,{afA/axi}) — H(O,{of/ox;D
Here H (R,{f;}) denotes Koszul homology of the elements fi on R.
proof : An element of © is a vector field 3 = = i:'lO 2;0/9x ; such that 3(f) = ziﬂo a; 9f/9%
= 0. This means exactly that (ao,....an) is in the kernel of the first Koszul differential

The image of the second Koszul differential then corresponds to the span of the ‘trivial
vector fields' c)f/éXj B/3%; - of/dx .a/axj . These can be lifted for trivial reasons. B

Proposition (2.7) :
Let J = (fg .fy ,....f ) C Q© be an ideal defining a variety of codimension m. Then one

has: Hpy-m(Odf; H »Ext§(O/],0).
This should be 'well-known'. For a discussion and proof see [Pe 31.

Something very interesting happens in case dim(Z) =1 :
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Corollary (2.8):
Let (ZA,fA) be an admissible deformation of (X,f) over a disc A. If dim(X) = 1, then

Coker(@t-A/A —30¢)= 0 .

proof: Of course, we apply (2.7) with f { = of/9x ; and m = n. Because by assumption
dimg U/(fJ¢ ) < o it follows that Hy (Q{of/ox}) = Extdy (O/¢ ,0) = Ext(O/1,0)
% Wy , the dualizing module of L. But in a flat family one has : wZMA® Os = Wy,
as one easily checks. The assertion then follows from (2.6). ®

Corollary (2.9):

If dim(Z) = 1, then the dimension of the component of the base space of Def(X.f) to
which o maps is equal to the number of A - points that split off. [

This is very similar to the case of an jsolated hypersurface singularity.

Question (2.10):

Is is true in general (under the stated conditions) for an admissible deformation that
Coker(®¢ , —*0¢) = 0? This sounds rather implausible, but it would be extremely
interesting to know the answer, especially for Z of codimension 2.

§3 Applications to Surface Singularities.

From now on we will restrict further to the case X is a hypersurface germ in C3.
Then the conditions of §2 are equivalent to X being weakly normal, i.e. X having a
singular locus I, which is an ordinary double curve away from the point 0. The normal-
ization X will be a (multi-) germ of a normal surface singularity. As was mentioned
in the introduction, one has an equivalence of functors between Def(X — X) and
Def(Z,X), whereas Def(X — X) — Def(X) is smooth. So there is in this case a 1-1
correspondence between components of the base space of X and components of the
base space of (Z,X). We now spell out the notions corresponding to smoothing and
smoothing component.

Definition (3.1):

A. Let XCc €3 be a weakly normal surface singularity, with £ = Sing(X) .
A disentanglement of (Z,X) over A is an admissible deformation (£ ,X ) over A such
that for a general t ¢ A the disentanglement fibre X; has only the following types of
singularities: ordinary double curve (type A_ ), ordinary pinch point (type D_, ), ordinary
triple point (type T ).

Q0 0,0
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B. Let fe O = €{x,y,z} such that X := f 1) isa weakly normal surface
singularity with singular locus £. A disentanglement of (Z,f) over A is an admissible
deformation (Z,,f,) over A such that (Z ,X : = f “10) is a disentanglement in the
above sense and such that for a general t ¢ A the disentanglement function f, has at
most A, - points away from the zero fibre.

C. An irreducible component of the base space of the semi-universal admissible
deformation is called a disentanglement component when over it disentanglement occurs.
On each such component the number of pinch points and triple points of the
disentanglement fibre (and the number of A, - points of the disentanglement function)
is constant and will be denoted by #D_ . #T (and #A,) respectively. Note that corollary
(2.5) and (2.9) can be applied to these components.

Remark (3.2):

There exist weakly normal surfaces X that:

* have no disentanglement at all.

* have several disentanglement components.

* have components in their base space which are not disentanglement components.

This follows from the equivalence of functors and the fact that there exist normal
surface singularities X with the corresponding properties.

However, in the case that the function f is an element of 12 C [1 there is a special
disentanglement component in the base space of Def(Z,X) and Def(Z,f). This component
can be described as follows: (see also [Pe2], Ex.2.3) Write f = 2, i.jzi hij A; 4y, where
l=(Aé"“’Ar)' Choose representatives gy 182:+:8p for a basis of the vector space
12/1 ﬂjf and write these as g = zi,}=1 Prij ~Ai~Aj . Let S be the (smooth) base space
of the semi-universal deformation of the curve Z and let 4; (s) be generators for the
ideal of the curve X , s¢S. Consider the function

F: €3xCPx§ —— 3 ¢

F(X,y,z,ti,tz,..‘,tp, s) = 21,121 (hlJ + Zkg1 tk.kpklj)Al(S)AJ(S)

Then F is a disentanglement function over CP xS. For general s¢S the curve Z is
smooth, so in this disentanglement no triple points occur. It is not obvious at all that
this really is a comgonent of the base space of Def(Z,f). For this one has to prove that
no element of fI/1 © can be lifted over this deformation, a fact that ultimately depends
on Tz(Z) = TZ(E) = 0 for a space curve. For details we refer to [J-S21.
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Example (3.3): The Pinkham - Pellikaan example.

Let F(x,y.z;a,b,c,u) := X“Z + Yz + 22+ 2A(XY +YZ+2ZX) + 2uxyz , where
X := (y~b}{(z+c) +4bc ; Y := (z-c)(x+a) +4ac ; Z:= (x—a)(y+b) +4ab
and where ) is a fixed complex number, )\2*1 .

Let X(ab,c,w = {(x,y.2)} Flx,y,z:a,b,c,u) = 0}.

The surface X := X(0,0,0,0) is just the cone over a three-nodal quartic in E’z , with
singular locus defined by the ideal I = (yz,zx,xy). Hence its normalization R is the
cone over the rational normal curve of degree 4 in lP4'. This singularity has two
different smoothing components, as H. Pinkham discovered [Pi]. The surface X has two
different disentanglement components, a fact discovered by R. Pellikaan [Pel],
[Pe2],Ex.2.4. The surfaces X{(a,b,c,0) are fibres over the big component, X(0,0,0,u)
over the small component. Below a graphical impression of the real part of these
surfaces is given. (A <-1.)

a,b,c>0,u=0 a=b=c=;=0 a=b=c=0, u> 0
(b,c small)
#D_ =4 #D_ =6
#T =0 #T =1
#A =6 BA =4

Probably these pictures should be considered as an artists impression; we challenge
computer graphicians to provide better ones! We remark that the A, - points cannot
be real all at the same time.
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Theorem (3.4):

Let X be a germ of a weakly normal surface singularity in CS, with singular locus X,
defined by a function f ¢ €{x,y,z}. Then dimensions of disentanglement components differ
by even numbers.

proof : As Def(Z,f) ——Def(%,X) is smooth, it suffices to consider disentanglement
components of f. For those of Def(Z,f) we have by (2.9) that the dimension is equal
to #A; , the number of A, - points that split off. We have the following formulae:

* jf) = dim(I/(Jg) = #A; + #D (see [Pe2])
*  VD_(f) = #D_ - 2.#T (see [Jo]

Here VD_ (f) is the so-called 'virtual number of D_ - points of f as introduced in [Jol.
The left hand sides are invariants of f and do not refer to any deformation of f.
Hence: #A, = (j(f)-VDm(f)) - 2.#T, and so #A, is a mod 2 invariant of f.

Remark (3.5):

Theorem (3.4) gives a new and local proof of the fact that the dimension of smoothing
components of normal surface singularities always differ by an even number, a fact first
proved by J.Wahl [Wa]. We see this as follows: Def(X ) ~ Def(X —X) ~ Def(Z,X)
~ Def(Z,f) (where ~ means:"base spaces differ by a smooth factor") and smoothing
components correspond to disentanglement components. Our projection approach to
the deformation theory of normal surface singularities thus gives a geometrical origin
to the difference in dimension: every extra triple point in the disentanglement eats two
dimensions of the component.

In [J-S1] we applied the projection idea to determine the structure of the base
space of the semi-universal unfolding of all rational quadruple points in a uniform way.
(In {J-S4] we will give a more streamlined exposition of this result.)

§4 Mappings from €2 to €3

In this paragraph we will give a proof of a conjecture of D.Mond. (For a different
proof we refer to his paper in these proceedings.) Before even formulating the theorem,
we note that the number #A of A, - points that branch off in a disentanglement of
a function f has a clear topological meaning :
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Lemma (4.1):

Consider a disentanglement (I,,fy) —+A of function f ¢ C{x,y,z} defining a weakly
normal surface X with double locus Z, over a disc A. Let X = f t—i(O), t + 0, be the
disentanglement fibre, Z, its singular locus and 'Xt its normalization. Then we have:

1) XX -1 =#A,
2) X(Z) -1 =2.#T - W)
3) X (Xp =X Xp + X(g) - #D_ + #T

where X denotes the topological Euler characteristic.
(Of course, for these statements to make sense, one needs to take appropriate
representatives. For simplicity of statement, we simply ignore this.)

Sketch of proof : 1) and 2) are "jump formulae” computing the jump in topology in
terms of local data. 1) is just a very special case of a general result for functions.
(We refer to the paper of D. Siersma in these proceedings [Sil. In fact, X, has the
homotopy type of a wedge of #A, 2-spheres, see also [Mo3].) We only have to remark
that during the disentanglement the fibration at the boundary of the Milnor sphere does
not change, essentially because outside 0 the surface X has only A - singularities,
which are rigid for admissible deformations. Formula 2) is just the jump property of
the milnor number w(X) of a curve singularity (see [B-GJ]). Formula 3) is an easy
exercise in topology. ®

Now consider a map-germ ¢ : (Cz ,0) —(C 3 , 0) . The space of first order
deformations of this diagram, 'I'](Cz 2,3 ) , is the same as the space of first order

deformations of ¢ , modulo left-right equivalence:
Te? 25 ¢d) = p*0p3 /(do0¢2 + 9l0g3)

The dimension of this vector space is called the /Ae - codimension of ¢, cod{y), and
if this number is finite, ¢ has a semi-universal unfolding with of course a smooth base
space of this dimension. In [Mo1], D.Mond started to classify such ¢ with small A.-
codimension. In [Mo2], he posed a question, which is equivalent to the following:

Conjecture of D. Mond (4.2):

Let ¢ : (CZ,O) -——?(Cs,O) a map-germ with cod(¢){~ . Let X be an appropriate
representative of the image-germ ¢(C~,0), and put X = cp_l(X).(So X is just a small
neighbourhood of 0 in €“ .) Let ¢, be a generic perturbation of ¢, with t ¢ A, a small
disc. Then one has:

cod(9) < X (o (XN -1

with equality in case that ¢ is quasi-homogeneous.
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proof : Because cod(y) {, the surface X is weakly normal, with double locus Z. Let
f=0 be an equation for X. The map ¢ : X —X can be identified with the normalization
map of X. We have: Def(Z,f) ~ Def(Z,X) = Def(X —X), so Def(Z,f) and Def(L,X) have
smooth base spaces. On the other hand, X = ‘Pt()b can be seen as a disentanglement
fibre, so by (4.1} , (2.9) and (2.3):

X (X ) -1=#A = dmTHEZ0) 2 dimTHE,X) = codle)

Equality holds when f or, what is easily seen to be equivalent, ¢ is quasi-homogeneous.
®

Remark (4.3):

In the mean time D. Mond generalized his question or conjecture. It is the same as (4.2),
only now for map-germs ¢ : C? —’C"ﬂ . We remark that our proof would generalize
to this situation If we had a positive answer to question (2.10).
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